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Abstract 

We construct an effective potential in power series of the Wilson line and 

the chiral condensate order parameters. In a suitable range of numerical pa- 

ran&era, the potential qualitatively describes the deconfinement and chiral 

transitions, which take place at the same temperature, a indicated from the 

recent Monte-Carlo calculation of lattice QCD at finite temperature. 
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Many people now believe that quarks and gluons are liberated and the chiral 

symmetry is restored at high temperatures while they are confined and the chiral 

symmetry is spontaneously broken at low temperature if the quark masses are 

ignored. 

Recent developments[‘l121 of Monte Carlo calculation in the lattice gauge theory 

seem to suggest that the deconfining and chiral transitions of QCD matter are 

first order and that the transition temperatures are almost the same, though there 

remain some controversies. Although we have not yet understood the underlying 

physics of the interrelation between the deconfining and chiral transitions, our in- 

tuition to QCD matter at finite temperature will be enhanced if we are able to 

construct an effective theory which can qualitatively (at least) reproduce the result 

of the Monte Carlo simulation. 

The order parameter of deconfining transition131 is the Wilson line, 

n =< TrPezp(i 
VT 

X”A;dr) >= ecFqIT 

with X” being the generator of SU,(3) in the fundamental representation. Here Fp 

is a free energy of a single static quark. In the absence of dynamical quarks, the 

nonzero expectation value n implies a spontaneously breaking of 2s symmetry, the 

center of color SU(3) group.[‘l This also means that the quarks are deconfined, since 

the free energy of a single static quark Fp is finite. On the other hand, if B = 0 

the Z3 symmetry is restored and the quarks are confined since Fq is then infinite. 

In the presence of dynamical quarks, the Zs symmetry is explicitly broken and the 

Wilson line is only an approximate order parameter. However, it turns out that R 

is a fairly good order parameter to describe the deconfining transition, since n is 

actually very small below the critical temperature. We will later discuss the effects 

of the explicit Zs breaking. 

For the chiral symmetry, the order parameter is the chiral field matrix, or the 

quark condensate 

M;:i=<&(l+%)$j> (i,jz1,2 ,... iv,) , (2) 

with i, j being flavor indices. 

In order to make our discussion definite, we assume that the qualitative feature of 
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the hysteresis curves is like the ones shown in Fig. 1. Similar hysteresis curves have 

been clearly observed in the recent numerical calculation with dynamical fermions 

by Fukugita and Ukawa.1’1 One of the important points to notice is that the terminal 

temperatures Tr and Ts of the hysteresis appear to be common to both the deconfin- 

ing order parameter I$ = Ren and the chiral condensate o = Czr < $i$i >. Below 

Tr the deconfining order parameter 4 = ReCl is very small and the system is in the 

confining phase. It remains small until the temperature goes up to T2. Above T,, 

4 jumps up to a value O(1) and the quarks become deconfined. When the system 

cools down from a high temperature, the order parameter I#J remainsO(1) when the 

temperature passes through Tz and until it goes down to Tl. There the order pa- 

rameter becomes very small again and the system goes back to the confining phase. 

We can do a similar description for the chiral order parameter o which shows the 

chiral symmetry breaking and its restoration. 

We are going to construct a Ginzburg-Landau type potential which is valid near 

the critical temperature and describes the qualitative feature of the phase transitions 

stated above. 

Let us write down an effective potential V(fl,M) in a power series of Cl and A4 

up to forth order, 

v = V(fl,M) 

zz ;cl+rl- ;Re(nJ) + p+ny 

+;(tr(M+M))z + +(A4+M))” + ~tr(M+M)“) 

+;Re(detM) 

+$7+Rtr(M+M) 
+VZ3breaking . (3) 

This effective potential respects the chiral symmetry under M + UMv+, 

UeSUr(N,), VL~+V~(N~).[~~’ The terms except the last one are symmetric under 

Zs, fl + zn, ~2s. There are a variety of 5 breaking terms, Refl, Re@, Rd12Cl+, 

rmn,. . . Rd. tr(M+M)Re~*tr(M+M) . . . . 

Let us assume Id7 = 0 and retain only two degrees of freedom 4 = ReG and 
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(I = trM/Nf. For the purpose of comparison with the Monte Carlo calculation of 

Ref. [2], we consider the case NF = 4. We end up with 

V(l#J,u) = ;& - ;,$a + p 

+ ;u2 + p 

+ ;&i?+d~+ kc@ . (4) 

(We have used the same symbols for the coefficients as in Eq. (4), for notational 

simplicity). 

Only the last two terms are genuine Zs breaking ones. The terms like a/2. @, 

b/3 * @,c/4 . d4 and X/2 1 02@ may get some contribution from the Z3 breaking 

terms. The terms in the first line also exist in the pure SU,(3) gauge system and 

the cubic term is responsible for the first order phase transition of confinement 

and deconfinement in that system.1’1 As we shall see later, if we adopt the effective 

potential (4), the cubic term #a is a driving force of the first order phase transition. 

The X term in the last line gives an essential feature of the interplay of deconfining 

and chiral transitions observed in the numerical simulations. We parametrize the 

coeeficients of the quadratic terms as 

a = al(T; -T) 

a = al(T -T2r) (5) 

with or, (~1, Tl! and Trr being parameters. It is assumed that the coupling constants 

b, c, -y, k and X are independent of temperature. The coefficient d of the linear term 

in 4 may well depend on the temperature T. We have to caution ourselves that our 

assumption on the parameters in the effective potential may be a good one only 

near the critical temperature. 

The analysis of the potential (4) is elementary. We first consider the case a = 

k = d = 0 in order to make our presentation as simple as possible. Later we shall 

give the results for nonvanishing a, k and d and discuss the effects of the 2s breaking. 

‘The authors of Ref. 151 considered the chin1 model and obtained a so-called fluctuation induced 

first order phase transition for Np 2 2. Here our approach is completely different and much more 
naive. 
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The extrema of the potential are given by 

av - = 
a4 

c$(-bd + c& + Xc+‘) = 0 , 

CW - = o(a+y2 + A&) = 0 
au (‘5) 

For a locally stable state, the Hessian matrix 

[ 

dvlap, azvla4a0 
H = aw/auaq$ #V/W 1 (7) 

has to be positive definite. It turns out that the only candidates of local minima 

are 
(&,O) 3 d (deconfinement) 1 

(0,u0) G c (confinement) J 

40 = b/c 
u~ = ~+iyz ;. 

1 
(9) 

((0, -us) is equivalent to (0,~) due to the symmetry). 

The other extrema are either local maxima or saddle points if X2 < yc, which is 

a necessary inequality for the structual stability of V. We assume that o, b, c,y, Ti 

are positive. 

At the deconfinement point d = (q&,0) th e value of the free energy and the 

Hessian are respectively 

b2 Jc" 0 
Hd = 

0 al(T - T;) + XbZ/c2 1 
The confinement point exists only if T < Ti and there the free energy and the 

Hessian are 

v, = -$(T - T;)~ 

H, = 
+(T; -T) 

0 (11) 
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It is easy to observe from Eqs.(lO) and (11) that (A) for T > Ti d is the only 

local minimum and Hd is positive. Hence the deconfining and chiral symmetric 

phase is realized. (B) for Ti > T > TI = Ti - $(i)r, both d and c are local 

minima. (c) for T < T,, d becomes a saddle point, since one of the eigen values of 

Hd becomes negative. Here e is the only local minimum so that the confining and 

chiral symmetry broken phase is realized. The first order phase transition will take 

place through a tunneling at a point where V, = V,, or 

The obvious requirement Tz > T,, > Tl implies the restriction to the coupling 

constant X 

A> 7. 
d-- (13) 

Perhaps the conceptual picture, Fig. 2 may be helpful to understand what is going 

on in the transitin region. In summary, we have gotten hysteresis curves shown in 

Fig. 1 with TI = Ti - &(i)z, TZ = Ti ~$0 = b/c and ae = dm. The latent 

heat associated with the first order phase transition at T = T,,. is 

L = +-o - T$+o = ZT., * (T; - Te,) 

This completes the analysis of the effective potential in the simplest case, a = k = 

d = 0. 

For more general cases, we just quote the results. For a nonvanishing but a 

small a compared with b and c, TI = T,’ - $(i)*,Tz = (alTi + X~T~)/(a, + Xy), 

40 = 
b + db2 + 4alc(T - T;) 

2c 

and 

a,(;)“+:(T;-T,q) 

The expression for T,q is given by V, = V,. Here we have assumed that (~1 > 0, Ti > 

Ti, which implies the point (4,~ = (O,O), namely confining and chiral symmetric 
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phase is locally unstable for all T. We can easily check that there are only two 

candidates of local minima, (&,, 0) and (0, us), if (x1 > 0, Ti > Ti. 

Let us go back to Eq. (4) and take account of the linear terms in the Wilson 

line which are purely 2s breaking effects. The extrema are now given by 

LW 
- = a~-b~2+c~3+XuZ~+d+ku2=o a4 

W 
- = au+-yu3+Xuc#12=0. 
i3U 

Note that the Monte Carlo calculation shows that 4 = ReCl is very small in the 

region of a finite u. This implies that either d and k are very small or we need a fine 

tuning of parameters a, 7, d and k so that d+kut M cr+rui m 0 hold simultaneously. 

We have already considered the first case. Let us consider the second case. The 

potential analysis similar to the previous one shows that we also have the first order 

phase transition with 

Tl = T; - $(;)2 

T 
2 

= X/WIT; + 0; - 2ka/y 
Vwl +a~ ’ (18) 

The above expressions (17) shows that the hysteresis curve shrinks for a larger k, a 

2s breaking coupling. In Ref [6], ‘t 1 is argued that for a large quark mass mp >> T., 

the linear term d4 gives a main quark mass dependence of the effective potential 

and d - ezp(--m, x copzst). Since k is proportional to d from the fine tuning, this 

implies that the hysteresis is enhanced for a larger value of the quark mess m, in 

the region mp > T.,. This quark mass dependence is consistent with the Monte 

Carlo results and also with the arguments given in Ref.6 [6] and [7]. This is also 

intuitively understandable, since for a large quark mass the system approaches the 

pure SU,(3) gauge system. For a small quark mass m, < Teq, we do not know the 

quark mass dependences of k and d. If we assume that they are not significant and 

that the main quark msss dependence comes from the additional so-called (I term, 

mu, we have 
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Tl = &(?)2/3 

+(terms indenpendent of m) 

T2 = - G(,,(T; -T;))-‘/” 

+(terms independent of m) . (19) 

We may easily recognize that for m, < T,, or for a very small value of m, T1 

increases and Tz decreases as m increases and hence the hysteresis curves will shrink. 

However we have to keep in mind that the issue of the quark mess dependence of 

the parameters of the effective potential is a highly dynamical one and therefore 

that the expressions (17) and (18) will be two of possibilities of the quark mass 

dependence of the hysteresis curves at best. 

In summary we have constructed a simple Ginzburg-Landau type effective po- 

tential in terms of the Wilson line and the chiral condensate, which exhibits the first 

order phase transition of deconfining and chiral symmetry restoration characterized 

by the hysteresis curves in Fig. 1. At high temperature T > T,, the quark-antiquark 

condensates dissapear, o = 0 and the chiral symmetry is restored. The deconfin- 

ing phase 4 = b/c becomes energetically more favorable than the confining phase 

4 = 0. In the intermediate temperature region TIP < T < T,, the deconfining 

and chiral symmetric (the confining and chiral symmetry broken) phase is a sta- 

ble (met&able) state. For 2’1 < T < T.,, the other way round is realized. At low 

temperature T < Tl, the quark-antiquark pair condenses, u # 0 and the chiral sym- 

metry is spontaneously broken. This makes the confining phase 4 = 0 energetically 

more favorable than the deconfining one CJ~ # 0 owing to the term Xu2@/2. 

The cubic term in C$ in Eq. (4) is responsible for the first order phase transition. 

The interplay of the deconfining and the chiral transition can be explained by the 

termX@u2/2if\/ye/3<X<@. A n attempt is also made to explain the observed 

quark mass dependence of the hysteresis. 

It is easy to construct an effective potential which includes ImG and has a 

minimum at Imfl = 0. Our model can also be regarded as the one for N.v = 2, 

since in that case the determinant term in Eq.(3) is reduced to a quadratic term 
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in o. An extention to NF = 3 needs a cubic term in (I, which makes the analysis 

slightly complicated. 

In this paper, we have been concerned with the “local minima scenario” which 

automatically implies that the deconfining and chiral transitions take place at the 

same temperature, Td = To,,. If we allow more than three local minima, (&,,O), (0,O) 

and (0,~s) by choosing al < 0, it is possible to construct a model in which the two 

transition temperatures are different, Td # Tc,,. This may be the case for the 

quarks in higher representations. 1’1 What we would like to emphasize here is that 

Td = Tch, if true, is not a numerical coincidence but rather a consequence of the 

global structure of the effective potential. 

So far we have not discussed the possibility of microscopic derivation of our 

effective potential. Although it will be very difficult near the transition temperature 

region, some tendency may be observed by calculating the effective potential in the 

continuum perturbation theory at high temperature.lQl At low temperature we may 

use the hopping parameter expansion.18~@‘l 

Although it seems premature, we can in principle fit our parameters to the 

Monte Carlo data if the data are given in terms of physical values. For example in 

the simplest version of our model the values of T,,T,,T.,, the latent heat and the 

level-off value of ReCl can determine all the parameters in the effective potential. 

The author hopes that the Monte Carlo calculations of various groups converge 

and that the effective potential fitted to the numerical calculation data can serve the 

phenomenology of quark-gluon plasma. ~1 After completion of this work, the author 

has received a preprint by Midorikawa, so and Yoshimoto.l’rl They treated the 

same model by the renormalization group equation assuming that the coefficients 

of quardratic terms a and (x vanish at the same temperature. 
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Figure Captions 

Figure 1: Schematic description of hysteresis curves motivated from the numeri- 

cal computation. f21 

Figure 2: Stable and metsstable states for three temperature regions. 
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